Applications of Automatic Differentiation

Lawrence L. Green

Multidisciplinary Optimization Branch

Aerospace Concepts and Analysis Competency

Methods Development Peer Review - Nov. 2001

Current Collaborators:

Alan Carle¹, Mike Fagan¹, Mike Park², Pichuraman Sundaram³, Dave Raney⁴, Perry Newman⁵, Ray Montgomery⁴, Pat Murphy⁴, Jay Brandon⁶ plus many former collaborators

1 Rice University
2 NASA LaRC / AAAC / CMSB
3 Boeing Long Beach
4 NASA LaRC / AirSC / DCB
5 NASA LaRC / ASCAC / MDOB
6 NASA LaRC / AirSc / VDB

ASCoT Project (1998-2002)

(Aerospace Systems Concept to Test)

Project Vision

Physics-based modeling and simulation with sufficient speed and accuracy for validation and certification of advanced aerospace vehicle design in less than 1 year

Project Goal

 Provide next-generation analysis & design tools to increase confidence and reduce development time in aerospace vehicle designs

Objective

- Develop fast, accurate, and reliable analysis and design tools via fundamental technological advances in:
 - Physics-Based Flow Modeling
 - Fast, Adaptive, Aerospace Tools (CFD)
 - Ground-to-Flight Scaling
 - Time-Dependent Methods
 - Design for Quiet
 - Risk-Based Design

Derivative Example

Benefit

- Increased Design Confidence
- Reduced Development Time LLGreen 2

Introduction to Sensitivity Methods

Motivation / Objectives

- Accurate and consistent derivatives of disciplinary analyses are needed for optimization and uncertainty analyses
- Legacy analysis codes don't usually provide derivatives
- Respond quickly to changes in the design environment
 - Design variables, objective, and constraints
 - Algorithms, physics models, and computational paradigms
- Sensitivity methods
 - + physics-based flow modeling = static S&C derivatives
 - + time dependent methods
 - + optimization methods
 - + uncertainty propagation

- = dynamic S&C derivatives
- = conventional design
- = robust design
- Assess / improve the computational impact
- Transfer tools and techniques to others

Introduction to Sensitivity Methods

Comparison of Methods

- Finite-differences (FD) (approximation, step size dependent)
- Manual differentiation (exact, tedious, prone to errors)
- Symbolic manipulators (exact, limited scope of application)
- Complex arithmetic (exact, similar to FD, can't be used if complex arithmetic is already present, no adjoint formulation)
- Automatic Differentiation (AD) ADIFOR
 - Application is fast and easy for standard Fortran 77
 - Exact to machine and problem formulation precision
 - Can be computationally much faster than FD
 - Forward (direct) and reverse (adjoint) forms available
 - Rigorous verification of accuracy (not discussed here)
- Hybrid schemes (AIAA 94-4262* and AIAA 2001-2529)
 - Leverage strengths / minimize weaknesses of several methods
 - Employ disciplinary, code, and differentiation knowledge
 - Improve computational efficiency

^{*} Developed by Rice University and Argonne National Laboratory Winner 1995 Wilkinson Prize for Numerical Software

ADIFOR Connections to Other MDOB Activities

PMARC

- Panel Method Ames Research Center
- Dale Ashby, et.al. (NASA ARC)
- Time-dependent low-order potential-flow with boundary-layer correction
- Forward- and reverse-mode ADIFOR applications

CFL3D

- Computational Fluids Laboratory 3-Dimensional
- Thomas, Rumsey, Biedron, etc. (NASA LaRC)
- Euler / Navier-Stokes (N-S); several turbulence models
- N-S Spalart-Allmaras (S-A) turbulent flow cases presented
- Executes on NASA Langley and Ames Silicon Graphics, Inc.(SGI)
 Origin 2000™ parallel computers
- Version 6 includes dynamic memory and MPI parallel execution
- Version 6+ modified for steady-state, constant rotational rate motions

Featured ADIFOR 3.0 Applications

- Computation of static / dynamic stability and control derivatives
 - 5 control variables / 6 aircraft responses
 - Forward mode AD application to PMARC and CFL3D
 - MDOB, AirSC/VDB, AirSC/DCB, and Lockheed-Martin (1998 2000)
- High Speed Civil Transport aerodynamic shape optimization
 - 401 design variables / 56 constraints / 1 aircraft response
 - Reverse-mode AD application to CFL3D
 - Boeing Long Beach with MDOB expertise (1999 2000)
- Reusable Launch Vehicle (RLV) aero-thermal shape optimization
 - 35 design variables / 6 constraints / 2 vehicle responses
 - Reverse-mode AD application to CFL3D with thermal effects
 - Boeing Long Beach with MDOB funding and expertise (2001)
- Control placement effectiveness study (time permitting)
 - 1353 placement variables / 3 aircraft responses
 - Reverse-mode AD application to PMARC
 - MDOB, AirSC/DCB, and Lockheed-Martin (1998)

Example ADIFOR Applications

- CFL3D Euler/Navier-Stokes code
- Forward mode
- Chain rule of calculus
- Number of variables:
 dependent > independent
- Aircraft stability derivatives
 Aircraft Forces & Moments

AIAA 99-3136 AIAA 2000-4321

- PMARC linear aerodynamics code
- Reverse Mode
- Discrete adjoint formulation
- Number of variables: independent > dependent
- Control placement effectiveness

 Surface Normal

 Displacements

AIAA 98-4807

AIAA 2000-1560

LLGreen 9

Lockheed-Martin Innovative Control Effectors (ICE) Configuration

Three α ranges of flow structure

Pitching Moment, CFL3Dv6 N-S S-A, Mach = 0.6, ICE Configuration

Angle of attack resolution: WT (~1 deg), CFD (~5 deg)
Good agreement for CN and CA with WT

LLGreen 11

Long. Static Stability (α derivatives)

CFL3Dv6.AD N-S / S-A, Mach = 0.6, ICE Configuration

Non-inertial Frame of Reference¹

- Efficient method to simulate moving CFD grids
 - Steady-state solutions of constant-rate motion
- Relatively simple to implement
 - Add source term to governing equations (induced body forces)
 - Increment boundary and initial conditions (rotational velocities)

Non-inertial Modifications to CFL3Dv6

Solution update:
$$\frac{1}{J} \frac{\partial Q}{\partial t} = R(Q) + S$$
 Source Term

Conserved $Q = [\rho \quad \rho u \quad \rho v \quad \rho w \quad e]^T$ variables:

Source term: $S = \frac{\rho}{J} \begin{bmatrix} 0 & \overline{\Theta}_x & \overline{\Theta}_y & \overline{\Theta}_z & \overline{\Theta}g \end{bmatrix}^T$

$$\frac{1}{J} = \text{Cell Volume}$$

$$\mathcal{B} = \begin{bmatrix} u & v & w \end{bmatrix}$$

Roll Rate Derivatives

CFL3Dv6.NI.AD N-S / S-A, Mach = 0.6, ICE Configuration

CFL3D / CFL3D.AD / CFL3D.NI.AD

Reference Data Comparison Summary, ICE Configuration

Description		Performance in Different Flow Structures		
		Attached	Vortical Bursting	
		0–5α	6–15 α	>15 α
Force and moment	(Cm)	Excellent	Excellent	Good
Long. Static stability	(Cm_{α})	Excellent	Excellent	Good
Lat. / Dir. Static stability	(CI_{β})	Excellent	Good	Poor*
Dynamic derivatives	(CI_p)	Excellent	Excellent	Good

CFL3D.NI.AD, 0-15 deg α 30 hr. per angle of attack case CFL3D.NI.AD, >15 deg α 90 hr. per angle of attack case Center-difference CFL3D.NI 0-15 deg α 44 hr. per angle of attack case

Execution on 16-processor SGI Origin 2000™ with 12 Gb RAM

^{*} Still better than previous capability

High Speed Civil Transport Optimization

With ADJIFOR*-Generated CFL3D Adjoint Computational Fluid Dynamics Code

• FASTER

- Development time
- Design cycle execution time
- ~ 25 times faster than comparable nonlinear design practice**

BETTER

- Numerical accuracy
- Design freedom
- Design results
- ~ 5% cruise drag reduction, 401 design variables**

CHEAPER

- Less human resources
- Less computer resources
- ~ 10 times faster inviscid design cycle**

^{*} Developed by Rice University

^{**} Initial Boeing Long Beach wing-body result

X-37 Wing/Body Aeroheating Optimization

35 Design Variables to Minimize Maximum Heat Flux CFL3D N-S (Menter), 38 Blocks, 0.85M Points

Max. Heat Flux Reduction (7% on Forebody and 16% on Wing Leading-Edge)

Control Placement Effectiveness

PMARC.AD linear aerodynamics code

- Model inflatable control effectors as bumps (outward normal displacements (Xn) of surface grid points)
- Control placement effectiveness is the derivative of pitch (Cm), roll (Cl), and yaw (Cn) moment coefficients with respect to surface displacement (Xn)
- Calculated for <u>each</u> of 1353 surface grid points
- Control effectiveness interpolated over the configuration surface

Part of integrated control effectors design and simulation package presented to NASA Administrator Daniel Goldin

LLGreen 19

Ongoing and Future Work

- Non-inertial modifications were implemented in the production version of CFL3Dv6; sensitivity studies of un-commanded aircraft motions (for example, F-18 E/F wing rock) are planned as cooperation between ASCOT and Abrupt Wing Stall Programs
- Second and higher derivative methods are being examined for use with S&C calculations to provide uncertain S&C data on F-16XL for use in robust control law design within ASCOT
- Second and higher derivative methods are being examined for use with aircraft robust design within ASCOT
- First-order sensitivity methods are being applied to the 2nd Generation RLV Program for uncertainty quantification and risk reduction
- Sensor / actuator placement studies for deformable nacelles are planned under the Ultra-Efficient Engine Program

Conclusions

- Automatic Differentiation enables the rapid development of next-generation analysis and design tools from legacy codes
- Automatic Differentiation provides increased confidence through automatic generation of sensitivity analyses
- Automatic Differentiation has contributed significantly to aircraft computational stability and control studies
- Recent MDOB work with ADIFOR has pioneered advanced sensitivity techniques which reduce the computational impact of sensitivity analyses
- MDOB actively seeks to transfer sensitivity tools and techniques to others
- Automatic Differentiation enables probabilistic uncertainty quantification and propagation through method of moments (Newman)

References 1

- Putko, M. M., Newman, P. A., Taylor III, A. C., and Green, L. L., "Approach for Uncertainty Propagation and Robust Design in CFD Using Sensitivity Derivatives," AIAA Paper 2001-2528, 15th AIAA CFD Conference, Anaheim, CA, June 11-14, 2001.
- Taylor III, A. C., Green, L. L., Newman, P. A., and Putko, M. M., "Some Advanced Concepts in Discrete Aerodynamic Sensitivity Analysis," AIAA Paper 2001-2529, 15th AIAA CFD Conference, Anaheim, CA, June 11-14, 2001.
- Sherman, L., Taylor III, A., Green, L., Newman, P., Hou, G., and Korivi, M.,
 "First- and Second-Order Aerodynamic Sensitivity Derivatives via Automatic Differentiation with Incremental Iterative Methods," Journal of Computational Physics, Vol. 129, No. 2, 1996, pp. 307-336.
- Park, M. A. and Green, L. L.: "Steady-State Computation of Constant Rotational Rate Dynamic Stability Derivatives," AIAA Paper 2000-4321, 18th AIAA Applied Aerodynamics Conference, Denver, CO, August 14-17, 2000.
- Park, M. A.; Green, L. L.; Montgomery, R. C.; and Raney, D. L.: "Determination of Stability and Control Derivatives Using Computational Fluid Dynamics and Automatic Differentiation," AIAA Paper 99-3136, 17th AIAA Applied Aerodynamics Conference, Norfolk, VA, June 28-July 1, 1999.

References 2

- Limache, A. C., and Cliff, E. M., "Aerodynamic Sensitivity Theory for Rotary Stability Derivatives," AIAA Paper 99-4313, AIAA Atmospheric Flight Mechanics Conference, Portland, OR, August 9-11, 1999.
- Agrawal, S., Narducci. R. P., Kuruvila, G., Sundaram, P., and Hager, J. O.: "CFD-Based Aerodynamic Shape Optimization", European Congress on Computational Methods in Applied Sciences and Engineering, ECCOMAS 2000 Barcelona, September 2000.
- Sundaram, P., Agrawal, S., and Hager, J. O.: "Aerospace Vehicle MDO Shape Optimization Using ADIFOR 3.0 Gradients", AIAA 2000-4733, AIAA/ASME MDO Conference, Long Beach, California, Aug. 2000
- Sundaram, P., Agrawal, S., Hager, J. O., Carle, A., and Fagan, M.: "Viscous Design Optimization Using ADJIFOR - An HPCCP Perspective", NASA HPCCP/CAS Workshop, NASA Ames Research Center, Feb. 2000
- Sundaram, P., and Hager, J. O.: "Applications of Parallel Processing in Aerodynamic Analysis and Design", HPCCP/CAS Workshop, NASA Ames, Aug., 1998.